
AP 2009 - II

- 1.0 Die Bahn, auf der sich die Erde um die Sonne bewegt, kann in guter Näherung als eine Kreisbahn mit dem Radius $R = 1,496 \cdot 10^{11}$ m angesehen werden. Für einen Umlauf benötigt die Erde die Zeit T = 1,00a. Die Gravitationskonstante beträgt $G = 6,673 \cdot 10^{-11} \frac{m^3}{kg \cdot s^2}$.
- 1.1 Berechnen Sie den Betrag v_E der Bahngeschwindigkeit der Erde. [2]
- 1.2 Leiten Sie aus dem Gravitationsgesetz eine Formel her, mit der die Masse m_S der Sonne aus den unter 1.0 gegebenen Größen berechnet werden kann, und berechen Sie m_S. [5]
- 1.3.0 Der Asteroid 2007 TU $_{24}$ bewegt sich auf einer elliptischen Bahn mit der großen Halbachse $a=3,007\cdot 10^{11} \ m \ um \ die \ Sonne. \ Im \ Perihel \ P \ ist \ der \ Abstand \ des \ Asteroiden vom Massenmittelpunkt \ der \ Sonne am geringsten und beträgt <math>r_p=1,421\cdot 10^{11} \ m$. Hier besitzt er die Geschwindigkeit \vec{v}_p mit dem Betrag $v_p=37,9 \frac{km}{s}$. Siehe nebenstehende, nicht maßstabsgetreue Skizze.

- 1.3.1 Berechnen Sie aus der Umlaufdauer T und dem Bahnradius R der Erde sowie der großen Halbachse a der Umlaufbahn des Asteroiden die Umlaufdauer T_A des Asteroiden. [4]
- 1.3.2 Der Betrag v der Bahngeschwindigkeit v des Asteroiden ist abhängig von der momentanen Entfernung r des Asteroiden zum Massenmittelpunkt der Sonne. Zeigen Sie mithilfe des 2. keplerschen Gesetzes, dass in guter Näherung gilt:
 Das Produkt r · v ist konstant, d.h. unabhängig von der momentanen Entfernung r. [4]
- 1.3.3 Der Asteroid 2007 TU $_{24}$ ist ein so genannter Erdbahnkreuzer. Im Punkt K seiner Umlaufbahn fliegt der Asteroid in geringem Abstand über die Erdumlaufbahn hinweg. Dabei besitzt der Asteroid die Geschwindigkeit \vec{v}_K . Berechnen Sie mithilfe des in der Teilaufgabe 1.3.2 angegebenen Ergebnisses den Betrag v_K der Geschwindigkeit \vec{v}_K . [4]
- 1.3.4 Die Erde hat die Masse $m_E = 5,977 \cdot 10^{24} \, kg$, die Sonne die Masse $m_S = 1,98 \cdot 10^{30} \, kg$. Am 29. Januar 2008 um 09:33 Uhr MEZ kam es beim Punkt K zu einer nahen Begegnung des Asteroiden mit der Erde, bei der sich der Asteroid dem Massenmittelpunkt der Erde bis auf den Abstand $d = 5,542 \cdot 10^8 \, m$ genähert hatte. Zum Zeitpunkt dieser Begegnung übte die Erde die Gravitationskraft \vec{F}_E mit dem Betrag F_E , die Sonne die Gravitationskraft \vec{F}_S mit dem Betrag F_S auf den Asteroiden aus. Berechnen Sie den Quotienten $\frac{F_E}{F_S}$. [4]